# 激光写光电子学进展

# 完美偏振奇异光场的模拟生成

叶东\*,李宗辰,张颐,李俊瑶,马艺宁

江苏警官学院刑事科学技术系, 江苏 南京 210031

**摘要** 近年来,完美涡旋光束被提出并得到了研究。结合完美涡旋光束和偏振奇异以生成完美偏振奇异光场。将2束正 交圆偏振的拓扑荷数不同的完美拉盖尔-高斯光束叠加,得到完美偏振奇异光场,实验结果表明:完美偏振奇异光场的半 径比传统的偏振奇异光场半径小得多。此外,研究了不同情形的正交圆偏振的完美拉盖尔-高斯光束与传统拉盖尔-高斯 光束的叠加,其叠加光场的偏振态表现各异,并且出现了"准高阶偏振奇异"的现象。完美奇异点的模拟生成拓宽了奇异 光学的理论研究范畴。

#### **DOI:** 10.3788/LOP213008

### Simulated Generation of Perfect Polarization Singularity Light Fields

#### Ye Dong<sup>\*</sup>, Li Zongchen, Zhang Yi, Li Junyao, Ma Yining

Department of Criminal Science and Technology, Jiangsu Police Institute, Nanjing 210031, Jiangsu, China

**Abstract** Recently, perfect vortex beams have been proposed and studied. Therefore, in this paper, we combine perfect vortex beams and polarization singularities to generate perfect polarization singularity light fields by superimposing two orthogonal circularly polarized perfect Laguerre-Gaussian beams with different topological charges. The results show that the radius of the perfect singular field is much smaller than that of the conventional singular field. We also study the superposition of orthogonal circularly polarized perfect Laguerre-Gaussian and conventional Laguerre-Gaussian beams for different cases. Consequently, we obtain that the polarization states of the superimposed light fields are different, and the phenomenon of "quasi-high-order polarization singularities" appears. Moreover, the simulation of perfect singularities has broadened the theoretical study of singular optics.

Key words singular optics; laser optics; polarization singularity; perfect Laguerre-Gaussian beam

# 1引言

自1992年 Allen等<sup>[1]</sup>提出光的轨道角动量以来,光 学涡旋就吸引了研究者的关注,并被应用于光镊、光通 信、生物医学工程、光学成像等领域<sup>[2-9]</sup>。常见的涡旋 光束,如拉盖尔-高斯光束(Laguerre-Gaussian beam, LGB),已经显示出光束的半径与拓扑荷有关,这将限 制涡旋光束的应用范围。为了克服这一缺点, Ostrovsky等<sup>[10]</sup>于2013年提出了完美光学涡旋,其半 径与拓扑电荷无关。最近,研究者也对完美涡旋光束 的生成进行了研究<sup>[11-13]</sup>。 光学涡旋在矢量光场领域有很广阔的应用前景, 它衍生了对偏振奇异点的研究<sup>[14]</sup>。偏振奇异点是指非 均匀偏振椭圆场中的圆偏振点(C点)或矢量场中的强 度为0的点(V点)。偏振奇异点在生成、检测和应用 方面已经得到了研究<sup>[15-16]</sup>。随着新型光束的不断涌 现,用于生成偏振奇异点的可选择的光束越来越多,然 而目前的研究尚未将偏振奇异点和完美涡旋光束联系 在一起。

针对这一问题,本文采用完美光学涡旋来模拟生成完美偏振奇异点,研究基于完美拉盖尔-高斯光束(Perfect Laguerre-Gaussian beam, PLGB)生成的完美

通信作者: "dongye1213@163.com

收稿日期: 2021-11-22; 修回日期: 2022-01-17; 录用日期: 2022-01-26; 网络首发日期: 2022-02-05

基金项目: 江苏省自然科学基金(BK20190809)、江苏省公安厅公安理论及软科学项目(2020LX005)、江苏省高等学校自然科学研究面上项目(19KJD510002,21KJD510005,21KJD620002)、江苏警官学院高层次引进人才科研启动项目(JSPI19GKZL404)、公安技术"十四五"江苏省重点学科项目

- 2 数值仿真
- 2.1 完美光学涡旋理论

在柱坐标系 $(r, \theta, z)$ 中, LGB的电场可表示为<sup>[1]</sup>

$$U_{\rm LGB}(r,\theta,z) = A_0 \frac{w_0}{w(z)} \left[ \frac{\sqrt{2} r}{w(z)} \right]^{|l|} L_p^{|l|} \left[ \frac{2r^2}{w^2(z)} \right] \times \exp\left[ \frac{-r^2}{w^2(z)} - \frac{ikr^2}{2R(z)} + i(2p+|l|+1)\arctan\frac{z}{R(z)} - il\theta \right], (1)$$

式中: $A_0$ 为振幅常量,通常设定为1; $w_0$ 为束腰半径; w(z)为光束宽度,与 $w_0$ 的关系为 $w^2(z) = w_0^2 \Big[ 1 + (z/L_D)^2 \Big]$ ,其中 $L_D = kw_0^2/2$ , $k = 2\pi/\lambda, \lambda$ 为波长; $L_p^{[I]}$ 为拉盖尔多项式,p和l分别为径向和角向阶数;R(z)为瑞利长度(Rayleigh length),其表达式为 $R(z) = z \Big[ 1 + (L_D/z)^2 \Big]$ 。

式(1)在初始平面,即z = 0时,可以简化为  $U_{LGB}(r, \theta, 0) =$ 

$$\left(\frac{\sqrt{2} r}{w_0}\right)^{|l|} L_{\rho}^{|l|} \left(\frac{2r^2}{w_0^2}\right) \exp\left(-\frac{r^2}{w_0^2}\right) \exp\left(-\mathrm{i}l\theta\right)_{\circ} \quad (2)$$

PLGB 在初始平面 $(r, \theta, 0)$ 可以表示为<sup>[9]</sup>

$$U_{\rm PLGB}(r,\theta,0) \approx \left(\frac{\sqrt{2} r}{w_{\rm m}}\right)^{|l|} L_{\rho}^{|l|} \left(\frac{2r^2}{w_{\rm m}^2}\right) \exp\left(-\frac{r^2}{w_{\rm m}^2}\right) \exp\left(-il\theta\right), \quad (3)$$

式中:wm为修正光束宽度,其与wo的关系为

$$w_{\rm m} = w_{\rm g} / \left( 2\sqrt{2p + |l| + 1} \right)_{\circ} \tag{4}$$

#### 2.2 完美偏振奇异点的数值仿真

叠加2束正交圆偏振的拓扑荷数不同的光束是生 成偏振奇异光场的常见方法,在初始平面,其光场可以 表示为<sup>[17]</sup>

#### $E(r,\theta,0) = e_{\mathrm{L}}E_{\mathrm{L}}(r,\theta,0) + e_{\mathrm{R}}E_{\mathrm{R}}(r,\theta,0), \quad (5)$





第 60 卷 第 7 期/2023 年 4 月/激光与光电子学进展

式中: $e_{L}$ 和 $e_{R}$ 分别表示左旋圆偏振和右旋圆偏振基 底。为了得到完美偏振奇异光场,需要分别将 $E_{L}$ 和  $E_{R}$ 设定为拓扑荷数不同的PLGB。例如,将 $E_{L}$ 设定为 p=0,l=0的PLGB,将 $E_{R}$ 设定为p=0,l=-1的 PLGB,所得到的完美偏振奇异光场如图 2(a)所示。 从图中可以看出,这是一个典型的"柠檬"(Lemon)结 构的偏振奇异光场,其拓扑荷数为+1/2;图中虚线圆 圈为偏振椭圆不同旋向的分界线,圆圈内为左旋偏振, 圆圈外为右旋偏振。如果交换 $E_{L}$ 和 $E_{R}$ 的光束,那么 将会得到"星"(Star)结构的偏振奇异光场,其拓扑荷 数为-1/2,如图 2(b)所示;此时虚线圆圈内为右旋偏 振,圆圈外为左旋偏振。

将上述情况中的PLGB全部替换成LGB,所得到

的偏振奇异光场如图 2(c)~(d)所示。同图 2(a)~(b) 相比,虽然偏振奇异结构相同,但是基于 PLGB 模拟生 成的偏振奇异光场的半径比传统偏振奇异光场的半径 要小得多。

上述的"柠檬"或者"星"结构都是C点,其拓扑荷数为小数。偏振奇异光场还存在拓扑荷数为±1的情况,也就是V点。将 $E_L$ 设定为p=0,l=1的PLGB,将 $E_R$ 设定为p=0,l=-1的PLGB,则可以得到如图 3(a)所示的V点,其拓扑荷数为+1。交换 $E_L$ 和 $E_R$ ,将会得到拓扑荷数为-1的V点,如图 3(b)所示。相应地,如果采用LGB来生成V点,如图 3(c)~(d)所示,则产生的偏振奇异光场的半径远大于完美偏振奇异光场。



图 2 光束类别相同时生成的偏振奇异光场。(a)、(b)分别为基于 PLGB 生成的"柠檬"结构、"星"结构的偏振奇异光场;(c)、(d)分别 为基于 LGB 模拟生成的"柠檬"结构、"星"结构的偏振奇异光场

Fig. 2 Polarization singular light fields generated by the same beam type. (a), (b) are the Lemon structure and Star structure polarization singular light fields based on PLGB, respectively; (c), (d) are the Lemon structure and Star structure polarization singular light fields based on LGB, respectively



图 3 光束拓扑荷数相反时的偏振奇异光场。(a)、(b)分别为基于 PLGB 生成的拓扑荷数为+1、-1的 V 点;(c)、(d)分别为基于 LGB 模拟生成的拓扑荷数为+1、-1的 V 点

Fig. 3 Polarization singular light fields with different topological charges. (a), (b) are the V-points with topological charges of +1 and -1 based on PLGB, respectively; (c), (d) are the V-points with topological charges of +1 and -1 based on LGB, respectively

接下来考虑另一种情形:2束正交圆偏振的光束 分别为为LGB和PLGB。将 $E_L$ 设定为p=0,l=0的 LGB,将 $E_R$ 设定为p=0,l=-1的PLGB,所生成光 场的偏振态分布如图4(a)所示。从图4(a)可以看出, 此时光场为"柠檬"结构,整个光场呈左旋偏振。交换  $E_L$ 和 $E_R$ ,将会得到右旋偏振的"星"结构光场,如 图4(b)所示。如果将 $E_L$ 设定为p=0,l=-1的 LGB,将 $E_R$ 设定为p=0,l=0的PLGB,则会得到既 有左旋偏振又有右旋偏振的"星"结构,如图 4(c)所示。相似地,交换此时 *E*<sub>L</sub>和*E*<sub>R</sub>,将会得到既有左旋偏振又有右旋偏振的"柠檬"结构。

最后研究  $E_L$ 为p=0、l=1的 LGB,  $E_R$ 为p=0、 l=-1的 PLGB 所生成光场的偏振态分布, 如图 5(a) 所示。由于 2 个正交圆偏振光束在振幅分布上存在 差异, 所生成光场不再是线偏振, 但光束交换前后, 光 场的拓扑结构是一致的。此外, 此时整个光场的中心



图 4 初始平面拓扑荷数为+1/2或-1/2时的偏振奇异光场偏振态分布。(a) 左旋偏振的"柠檬"结构;(b) 右旋偏振的"星"结构;(c) 左旋偏振、右旋偏振均有的"星"结构;(d) 左旋偏振、右旋偏振均有的"柠檬"结构

Fig. 4 Polarization state distributions of polarized singular light fields with topological charge being + 1/2 or - 1/2 on the initial plane.
(a) Lemon structure of left-handed polarization; (b) Star structure of right-handed polarization; (c) Star structure with both left-handed and right-handed polarizations; (d) Lemon structure with both left-handed and right-handed polarizations



图5 初始平面拓扑荷数为+1或-1时的偏振奇异光场偏振态分布。(a) $E_L$ 为p=0、l=1的LGB, $E_R$ 为p=0、l=-1的PLGB; (b) $E_L$ 为p=0、l=-1的PLGB, $E_R$ 为p=0、l=1的LGB

Fig. 5 Polarization state distributions of polarized singular light fields with topological charge being +1 or -1 on the initial plane. (a)  $E_{\rm L}$  is LGB with p = 0, l = 1 and  $E_{\rm R}$  is PLGB with p = 0, l = -1; (b)  $E_{\rm L}$  is PLGB with p = 0, l = -1 and  $E_{\rm R}$  is LGB with p = 0, l = 1

点不再是C点。交换此时的 $E_L$ 和 $E_R$ ,得到如图 5(b) 所示的拓扑结构。

## 3 分析与讨论

在图 5(a)中, 左旋光束与右旋光束的拓扑荷数的 差为 2, 其生成光场对应的斯托克斯相位场(Stokes phase field)<sup>[18]</sup>如图 6(a)所示。在斯托克斯相位场的 中心存在一个相位奇点。通常来讲, 如果一个光场的 斯托克斯相位场中存在相位奇点,那么在该光场的相应位置应该存在1个偏振奇点。然而在图5(a)中,相应位置并非圆偏振,而是椭圆偏振。之前的研究<sup>[19]</sup>表明,生成光场的偏振态分布不仅与其对应斯托克斯相位场的拓扑结构有关,还与整个偏振椭圆场的偏振率 有关,也就是与2个正交叠加的圆偏振光束的振幅分 布有关。图5(a)的偏振椭圆场的椭圆率如图6(b)所示,其中数值的正负代表了偏振椭圆的旋向。从图中



图 6 准高阶偏振奇异光场的斯托克斯相位与椭圆率。(a)斯托克斯相位场;(b)椭圆率分布

Fig. 6 Stokes phase and ellipticity of the quasi high-order polarization singularity light field. (a) Stokes phase field; (b) distribution of ellipticity

#### 第 60 卷 第 7 期/2023 年 4 月/激光与光电子学进展

可以看出,中间部分椭圆率的绝对值的最大值接近 0.5,而圆偏振对应的椭圆率是±1。将图5的拓扑结 构命名为"准高阶偏振奇异",*E*<sub>L</sub>和*E*<sub>R</sub>的振幅分布差 异导致了这一现象。

为了与图 5(a)的情况形成对比,将 $E_L$ 设定为p=0、l=0的LGB,将 $E_R$ 设定为p=0、l=-2的PLGB, 此时所生成光场的偏振态分布如图 7(a)所示。此时 光场中间为C点,而这也正是拓扑荷数为1的高阶偏 振奇异:其与V点相比拓扑荷数相同,但是V点为线 偏振,而图7(a)为椭圆偏振场。此时光场对应的斯托 克斯相位场如图7(b)所示,其与图6(a)是一致的。光 场的椭圆率如图7(c)所示,中间部分的椭圆率为1,正 与C点对应。

此外,简单分析完美偏振奇异光场的传播特性。对 于图 2(a)与图 3(a)中的情形,利用快速傅里叶变换的 方法分析光场在自由空间传播一定距离的过程中,与 传播方向相垂直的横截面内的偏振态分布,如图 8 所 示,图中z为距初始平面的传播距离。从图中可以看



图7  $E_L$ 为p=0、l=0的 PLGB,  $E_R$ 为p=0、l=-2的 PLGB 生成的高阶偏振奇异光场。(a) 光场的偏振态;(b) 光场的斯托克斯相位场;(c) 光场的椭圆率

Fig. 7 High-order polarization singularity light field when  $E_{\rm L}$  is the PLGB with p=0, l=0, and  $E_{\rm R}$  is the PLGB with p=0, l=-2. (a) Polarization states of the light field; (b) Stokes phase field of the light field; (c) ellipticity of the light field



图 8 自由传播时完美偏振奇异光场在不同距离的偏振态分布(第一行为C点,第二行为V点)。(a)传播距离 z=100 mm;(b)传播距 离 z=300 mm;(c)传播距离 z=1000 mm

Fig. 8 Polarization states of perfect polarization singularities at different distances during free propagation(the upper row is C-points and the down row is V-points). (a) Propagation distance z = 100 mm; (b) propagation distance z = 300 mm; (c) propagation distance z = 1000 mm

到,无论是C点还是V点,完美偏振奇异光场在经过一 定距离的自由传播之后,尺寸有所增大,但是增大的幅 度很小。C点和V点的拓扑结构在传播过程中均得以 保存,但是C点的偏振态会发生旋转。

#### 4 结 论

利用 PLGB 模拟生成了完美偏振奇异光场。与传统的由 LGB 得到的偏振奇异光场相比,完美偏振奇异光场的半径要小得多。此外,模拟了正交圆偏振的 LGB 和 PLGB 叠加的情况,并提出了"准高阶偏振奇异",丰富了奇异光学的理论研究,并将拓宽偏振奇异的应用场景。在以后的工作中,将进一步研究完美偏振奇异光场的动态特性。

#### 参考文献

- [1] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.
- [2] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.
- [3] Paterson L, MacDonald M P, Arlt J, et al. Controlled rotation of optically trapped microscopic particles[J]. Science, 2001, 292(5518): 912-914.
- [4] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.
- [5] Zhuang X W. Unraveling DNA condensation with optical tweezers[J]. Science, 2004, 305(5681): 188-190.
- [6] Tamburini F, Anzolin G, Umbriaco G, et al. Overcoming the Rayleigh criterion limit with optical vortices[J]. Physical Review Letters, 2006, 97(16): 163903.
- [7] Xu Z H, Li X F, Liu X, et al. Vortex preserving statistical optical beams[J]. Optics Express, 2020, 28(6): 8475-8483.
- [8] 黄慧,寿倩,陈志超.奇点光束模式叠加特性研究[J].

#### 第 60 卷 第 7 期/2023 年 4 月/激光与光电子学进展

激光与光电子学进展, 2020, 57(19): 192601.

Huang H, Shou Q, Chen Z C. Research on superposition characteristics of singularity beam mode[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192601.

- [9] 马志远,陈康,张明明,等.拉盖尔-高斯幂指数相位涡 旋光束传输特性[J].光学学报,2022,42(5):0526001.
  Ma Z Y, Chen K, Zhang M M, et al. Propagation characteristics of Laguerre-Gaussian power-exponentphase-vortex beams[J]. Acta Optica Sinica, 2022, 42(5): 0526001.
- [10] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquidcrystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536.
- [11] Mendoza-Hernández J, Hidalgo-Aguirre M, Ladino A I, et al. Perfect Laguerre-Gauss beams[J]. Optics Letters, 2020, 45(18): 5197-5200.
- [12] Liu X, Monfared Y E, Pan R X, et al. Experimental realization of scalar and vector perfect Laguerre-Gaussian beams[J]. Applied Physics Letters, 2021, 119(2): 021105.
- [13] Yuan W M, Xu Y, Zheng K P, et al. Experimental generation of perfect optical vortices through strongly scattering media[J]. Optics Letters, 2021, 46(17): 4156-4159.
- [14] Ruchi, Senthilkumaran P, Pal S K. Phase singularities to polarization singularities[J]. International Journal of Optics, 2020, 2020: 2812803.
- [15] Dennis M R, O'Holleran K, Padgett M J. Singular optics: optical vortices and polarization singularities[J]. Progress in Optics, 2009, 53: 293-363.
- [16] Wang Q, Tu C H, Li Y N, et al. Polarization singularities: progress, fundamental physics, and prospects[J]. APL Photonics, 2021, 6(4): 040901.
- [17] Beckley A M, Brown T G, Alonso M A. Full Poincaré beams[J]. Optics Express, 2010, 18(10): 10777-10785.
- [18] Freund I. Poincaré vortices[J]. Optics Letters, 2001, 26 (24): 1996-1998.
- [19] Ye D, Peng X Y, Zhou M C, et al. Ellipticity of polarized ellipses in vector beams with orthogonal circularly polarized bases[J]. Optik, 2018, 158: 762-766.